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The occurrence of so-called four dimensional chaos in dynamical systems represented by coupled,

nonlinear, ordinary differential equations is rarely reported in the literature. In this paper, we present

evidence that Liley’s mesoscopic theory of the electroencephalogram (EEG), which has been used to

describe brain activity in a variety of clinically relevant contexts, possesses a chaotic attractor with a

Kaplan-Yorke dimension significantly larger than three. This accounts for simple, high order chaos

for a physiologically admissible parameter set. Whilst the Lyapunov spectrum of the attractor has

only one positive exponent, the contracting dimensions are such that the integer part of the Kaplan-

Yorke dimension is three, thus giving rise to four dimensional chaos. A one-parameter bifurcation

analysis with respect to the parameter corresponding to extracortical input is conducted, with results

indicating that the origin of chaos is due to an inverse period doubling cascade. Hence, in the

vicinity of the high order, strange attractor, the model is shown to display intermittent behavior, with

random alternations between oscillatory and chaotic regimes. This phenomenon represents a possible

dynamical justification of some of the typical features of clinically established EEG traces, which

can arise in the case of burst suppression in anesthesia and epileptic encephalopathies in early

infancy. VC 2013 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4804176]

The occurrence of so-called high order chaotic activity in

nonlinear systems has important consequences for the dy-

namical properties of the phenomenon that a model tries

to capture. In fact, the higher the order, the larger is the

number of variables needed to correctly describe the

irregular and unpredictable dynamics that a system

undergoes. Although chaos has been shown to arise out of

equations describing the average electrical activity of

populations of neurons in the human brain, this is the

first time high order chaos has been reported in such a

context. Evidence of such high order deterministic

dynamics has important implications for the origin of

clinically relevant patterns in electroencephalography

and for the effective use of signal processing techniques

in theoretical and applied neuroscience.

I. INTRODUCTION

There exist very few examples in the literature of dy-

namical systems described by sets of coupled nonlinear ordi-

nary differential equations (ODEs), which exhibit simple

chaotic attractors of dimension 3þ �, where � is a positive

number smaller than one. The occurrence of such dynamics

is often referred to as “four dimensional chaos,” as there

needs to be at least four degrees of freedom to generate such

behaviour. An early example of such chaos was presented by

Lorenz,1 in a system of polynomial-like, coupled ODEs.

Sigeti2 reported an accurate calculation of the Lyapunov

exponents for the Lorenz 4D model, and showed that the

Kaplan-Yorke dimension (DKY) is 3.34. Some other notable

examples of four dimensional chaos include those by

Hudson, R€ossler, and Killory,3 where for a piecewise-linear

set of ODEs, the authors computed the Lyapunov spectrum

and subsequently calculated a DKY of 3.035. Similar high

dimensional chaotic activity was also found in a model of

fluid flow,4 with a dimension for the attractor of 3.04. It is

important to distinguish between four dimensional chaos,

with a dimension of 3þ �, and “hyperchaos.” Although in

the latter the dimension is also at least 3þ �, the former only

possesses a single positive Lyapunov exponent, whereas

hyperchaos is instead associated with two or more positive

exponents.5

In this paper, a clear example of a chaotic attractor

whose DKY is significantly above three is given, with one,

unique, largest Lyapunov exponent, which is strongly

positive. These findings are born out of a parameter space

search of Liley’s mesoscopic theory of the electroencepha-

logram (EEG).6 Interestingly, the chaotic set discussed in

this work exhibits parameter values that are essentially

within the physiologically admissible range. The full
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Lyapunov spectrum, relevant time series and power spectra,

and a phase plot section of the dynamics are discussed

in the light of previously reported results for Liley’s

model. The origin of this high dimensional attractor is then

established, using a one-parameter bifurcation analysis,

showing that the system supports an inverse period dou-

bling cascade. Its presence is also responsible for so-called

type III intermittent behavior,7 with a characteristic hop-

ping regime between oscillatory and chaotic dynamics. The

similarity between this kind of dynamics and typical EEG

traces arising in pathological and sedated brain states is

examined. We finally conclude our investigation with a

discussion about the meaning of the existence of such four

dimensional chaos for the analysis of real-world EEG

signals.

II. LILEY’S THEORY OF THE EEG

Liley’s theory of the EEG is a complete spatiotemporal

theory of the dynamics of the mammalian electroencephalo-

gram. Here, only a brief description of its constitutive ODEs

is presented, which represent a mesoscopic, spatially homo-

geneous reduction of the general formulation. This model is

inspired by previous work by Freeman and collaborators,

who have extensively investigated the role of dynamical sys-

tems and chaos in theories of brain dynamics.8–10 Further

details, including a comprehensive physiological justification

for the model’s equations, can be found in Liley, Cadusch,

and Dafilis.6 The following reduced approach has proven to

be a fruitful generator of significant nonlinear behavior, such

as generalised multistability in the initial-condition space,11

robust chaos in parameter space with fat fractal scaling,12

and a Shilnikov’s saddle-node bifurcation route to chaos.13

The latter is of particular interest as Liley’s theory represents

one of the few examples of a real world mathematical model

that exhibits such a rare bifurcation scenario. Finally, these

ODEs have also found important applications in the charac-

terisation of some features of epileptic activity14 and in the

study of anaesthesia.15,16

The spatially homogeneous formulation of Liley’s

model is represented by the following equations:

se
dhe

dt
¼ ðher � heÞ þ

heeq � he

jheeq � herj
Iee þ

hieq � he

jhieq � herj
Iie; (1)

si
dhi

dt
¼ ðhir � hiÞ þ

heeq � hi

jheeq � hirj
Iei þ

hieq � hi

jhieq � hirj
Iii; (2)

d2Iee

dt2
þ 2a

dIee

dt
þ a2Iee ¼ AaefNeeSeðheÞ þ peeg; (3)

d2Iie

dt2
þ 2b

dIie

dt
þ b2Iie ¼ BbefNieSiðhiÞ þ pieg; (4)

d2Iei

dt2
þ 2a

dIei

dt
þ a2Iei ¼ AaefNeiSeðheÞ þ peig; (5)

d2Iii

dt2
þ 2b

dIii

dt
þ b2Iii ¼ BbefNiiSiðhiÞ þ piig; (6)

where

SqðhqÞ ¼ Smax
q =ð1þ expð

ffiffiffi

2
p
ðhq � hqÞ=sqÞ; q ¼ e; i:

The main state variables of the model are he and hi, repre-

senting the mean modelled membrane potentials of the

excitatory and inhibitory cortical neural populations, respec-

tively. The variable he, on the basis of physiological argu-

ment, is assumed to model the EEG recorded from the

brain.6 The I terms describe synaptic dynamics: in short,

they express the synaptic drive to the modelled neural popu-

lations, due to feedback between neurons and input from

external sources. The model also incorporates the effects of

the resting (her and hir) and reversal potentials (heeq and hieq),

population time constants are given by se and si, and

synaptic weights are expressed by A and B, with synaptic

rate constants a and b. The Njk describe the density of synap-

ses from population j to population k, pjk is the external pulse

densities of type j to population k, mainly capturing the

effect of the input coming from the thalamus on the cortex.

Variations of pee, namely the excitatory input to the excita-

tory neuronal population, are particularly relevant for the

generation of complex behavior. As such pee is the parameter

selected to be studied via bifurcation analysis. Sigmoidal pa-

rameters include hq, the threshold for the neural population,

sq, which is proportional to the standard deviation of the fir-

ing threshold distribution of the neural population, and Smax
q ,

which includes the effects of the refractory period and

describes the maximum activity of the neuron population at

any one instance.

III. METHODS

A. Model parameters

The parameters for the model which generated these dy-

namics are pee ¼ 24:523 pulses per millisecond (or ms�1),

pei ¼ 2:299 ms�1; pie ¼ pii ¼ 0, A¼ 0.24 mV, B¼ 3.76 mV,

1/a¼ 24.89 ms, 1/b¼ 6.59 ms, her ¼ hir ¼ �70 mV; heeq

¼ 45 mV; hieq ¼ �90 mV; se ¼ 66 ms, si ¼ 24 ms, Smax
e

¼ 0:5; Smax
i ¼ 0:5; Nee ¼ 3034; Nei ¼ 3500; Nie¼Nii ¼ 536;

he¼�41mV; hi¼�49mV; se¼1mV�1; and si¼1:5 mV�1.

Further details on the parameterisation of the model can be

found in Liley, Cadusch, and Dafilis.6 Note that all parameters

are essentially within physiologically admissible intervals.

However, pee extends outside a physiologically “normal”

range of 0<pee<10ms�1, and thus might correspond to a

pathological or some other abnormal state.

B. Time-series and power spectrum

All model time series were obtained using XPPAUT,17 by

numerically integrating Eqs. (1)–(6) using a time step of

1 ms for a total duration of 105 s. In order to retain a strong

connection to the modelled physiology, equations were not

de-dimensionalised, such that physiologically appropriate

units were retained throughout. The first 5 s were discarded

(transient), leaving a time series of 100 s (i.e., 100 000

points). Representative 1000 ms long time series for he and

hi are shown in parts (a) and (b) of Fig. 1. Subsequent power

spectral analysis was performed on the full 100 s time series

using MATLAB, yielding a frequency resolution of 0.01 Hz
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and a Nyquist frequency of 500 Hz. Parts (c) and (d) of

Fig. 1 show the spectra for he and hi.

C. Lyapunov spectrum

Custom written code was used to calculate the full

Lyapunov spectrum of the system, using an implementation

of the Christiansen-Rugh algorithm18 to compute a continu-

ous Gram-Schmidt orthonormalization. The resulting algo-

rithm works by augmenting the given set of ODEs with

additional terms that capture the Lyapunov exponents of

the system: the original 10 dimensional system is aug-

mented such that 120 coupled, nonlinear, first order ODEs

need to be solved. This resulting system of 120 nonlinear

ODEs was integrated using the adaptive, stiff solver

CVODE,19 with the method of backward differentiation.

Efficiency and accuracy of the solutions were improved by

supplying a symbolically determined Jacobian matrix, to-

gether with the use of the dense linear solver option. In

order to calculate the spectrum of Lyapunov exponents, the

system of 120 nonlinear ODEs was integrated over 100 s of

simulated time. For this integration convergence was estab-

lished. Interestingly, although different parameter values

are involved in the present example, previous numerical

experiments have indicated that this choice of simulated

time provides reasonable convergence.12 This was then

repeated over 25 independent simulation runs, each with

different random initial conditions. The mean and standard

deviation of each Lyapunov exponent of the spectrum was

then calculated.

D. Kaplan-Yorke dimension

The Lyapunov spectrum was used to determine DKY, via

an appropriate reduction of the more general formulation.5

Specifically, for the chaotic attractor presented in this paper,

if ki ði ¼ 1;…; 10; k1 � k2…Þ represents the ith exponent

in the spectrum, it is found that jk1j > jk3j and k1 þ k2

þ k3 > 0, whereas k1 þ k2 þ k3 þ k4 < 0. On this basis, DKY

is given by

FIG. 1. Time series ((a) and (b)) and

spectra ((c) and (d)) for he and hi for the

parameter set under investigation. The

broadband nature of the power spectrum

is evident in panels (c) and (d), which

are clearly indicative of chaotic dynam-

ics. Note the presence of dominant

rhythms and higher harmonics alongside

the broadband power spectral activity, as

well as the significant amount of power

at high frequencies, especially in the

band 80–100 Hz.
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DKY ¼ 3� k1 þ k2 þ k3

k4

: (7)

E. One-parameter bifurcation analysis

Bifurcation diagrams were obtained using the software

AUTO,20 a well-established program for continuation in dy-

namical systems. Analysis proceeded with respect to pee as

the principle bifurcation parameter, for the reasons that (i)

pee represents a physiologically meaningful control parame-

ter, and (ii) pee has been meaningfully used to identify the

emergence of chaos and a range of other dynamical behav-

iours in this model.11,13

IV. RESULTS AND DISCUSSION

In order to determine the existence of a chaotic attrac-

tor, visual inspection of time-series and power spectra is

generally helpful, although not always decisive. The four

panels of Fig. 1 all illustrate different aspects of the dynam-

ics of interest in this study. Part (a) of the figure shows a

sample of the time series for he, whereas part (b) shows the

corresponding time series for hi, the mean soma membrane

potential of the inhibitory neuronal population. The irregu-

lar appearance of these time series, given their aperiodic

nature, strongly suggests the existence of chaos for the pa-

rameter values reported in the figure caption. The power

spectrum, Fig. 1(c), confirms such aperiodicity by being

characterized by a broadband distribution of power that

additionally reveals spectral peaks corresponding to elec-

troencephalographically plausible alpha (8–13 Hz), beta

(13–30 Hz), and gamma (>30 Hz) band activity. At the

same parameter values, a two dimensional, discrete phase

plot (with heðDtÞ on the abscissa and hiðDtÞ on the ordinate)

is shown in Fig. 2, with Dt ¼ 1 ms. The largely amorphous

structure of this cross section through the attractor confirms

that its dimension is of at least three, since attractors of

lower dimensionality would have a simpler, sharper and

more “focused” appearance.

Table I shows the estimated Lyapunov spectrum. The

strong k1 with a value of 9.6 (base e) per second clearly con-

firms the presence of chaotic dynamics. This and k2 ¼ 0

indicate that “simple” and not “hyper” chaos has been found.

Applying Eq. (7) to the exponents results in a DKY of 3.28

(N¼ 25, SD 0.02). Note that this formula is used with the

original 25 Lyapunov spectra to determine the statistics, as

opposed to calculating DKY for the averaged Lyapunov expo-

nents. The value of DKY is in line with examples of four

dimensional chaos present in the literature and previously

cited.2–4

It is now useful to investigate the origin of this phenom-

enon with the help of bifurcation analysis, and continue a

stable equilibrium solution in the parameter pee over the

range encompassing the value of pee used to generate the

aperiodic activity of Fig. 1. The bifurcation diagrams con-

tains three Hopf bifurcation HB1, HB2, and HB3 for values

pee ¼ 4:86, 29.49, and 29.76 ms�1, where only the last two

are shown in Fig. 3(a). From these bifurcations, a complex

scenario of stable and unstable periodic orbits unfolds. The

section of the plot relevant to the generation of high dimen-

sional chaos is shown in Fig. 3(b), where HB2 and HB3

appear in the bottom right corner, indicated by open trian-

gles. A stable orbit (in orange) emerges from HB3, loses its

stability around pee ¼ 29 ms�1 via a torus (TR) bifurcation

and continues for decreasing values of the parameter without

influencing the area of the diagram where the high dimen-

sional chaotic attractor exists. An unstable orbit (in green)

instead originates from HB2 and gives rise to a number of

complex bifurcations including period doubling (PD),

saddle-nodes on periodic orbits (SNLC), and tori. In the top

part of Fig. 3(a), two inverse period-doubling cascades are

present, starting respectively at pee ¼ 25:16 ms�1 and

pee ¼ 26:05 ms�1. A blow-up of this area is shown in Fig.

3(b), where the interplay among the diverse orbits can be

better appreciated.

The stable branches of each cascade are shown by

continuous black lines. The transitions between accumula-

tion of PD points and the genesis of chaos occur at about

FIG. 2. Phase plot for heðDtÞ and hiðDtÞ for the parameter set under investi-

gation, with Dt ¼ 1 ms. The shape is peculiarly blurred, with a persistent

shadow of points originating from the supporting orbit around which the

chaotic activity develops.

TABLE I. Lyapunov spectrum for the dynamics under investigation for the

Liley model. The mean and standard deviation of each Lyapunov exponent

was obtained from 25 independent simulation runs each started from differ-

ent, random, initial conditions. For further details refer to the Methods

section.

k Mean SD

k1 9.6 0.6

k2 0.00 0.02

k3 �6.4 0.5

k4 �11.5 0.6

k5 �40.12 0.01

k6 �40.32 0.01

k7 �151.65 0.01

k8 �151.86 0.01

k9 �480.5 0.9

k10 �1447 4
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pee ¼ 24:53 ms�1 for PDC1 and pee ¼ 25:35 ms�1 for PDC2.

The first of these regions is close to the value of

pee ¼ 24:523 ms�1, at which the chaotic time series depicted

in Fig. 1 is found. It is evident that PDC1 is responsible for

the high dimensional chaos observed in the model. If a com-

parison is made between the chaotic time series and the

orbits belonging to the stable branch in a late generation of

the cascade PDC1 shown in Figs. 4(a) and 4(b), these last

orbits behave as supports for the chaotic time series. The

second inverse cascade PDC2 is itself leading to a different

chaotic attractor and is one of the many examples of similar

period doubling cascades the model exhibits for the present

and for other parameter sets.

At this point, two observations are relevant. First, each

of the inverse PD cascades is matched by a symmetric,

direct PD cascade occurring for orbits at lower values of

the simulated extracortical (thalamic) input pee, beginning

at values pee ¼ 4:90 ms�1 and pee ¼ 4:92 ms�1 for cases 1

FIG. 4. In (a) and (b), the stable orbits

from the fourth generation branch in the

period doubling cascade PDC1 are

shown, for heðtÞ and hiðtÞ. Orbits are

scaled so that the intrinsic period of the

oscillation is T¼ 1. Notice the similarity

with part of the chaotic time series in

Fig. 1. In (c) and (d), examples of inter-

mittency between the chaotic attractor

and the stable orbit, for pee ¼ 24:4 ms�1

are illustrated. The intervals of small am-

plitude oscillations correspond to the

system being on the stable attractor, and

large amplitude bursts are due to the cha-

otic attractor.

FIG. 3. Relevant section of the one parameter bifurcation plot in pee. In (a), two Hopf points (triangles) are present in the bottom right corner of the figure,

from which orbits with different properties emerge. Different colors indicate different branches, stable (unstable) branches are continuous (dashed), whereas

orbit bifurcations are indicated by circles (period doubling, PD), squares (saddle-nodes on limit cycle, SNLC), and diamonds (torus, TR). Both period doubling

cascades are in black, PD points are in red, and generations (up to three) are indicated by subscripts. The ordinate is given by the maxima of he, hence only the

top halves of the familiar pitchfork shapes of period doubling cascades is presented. The first, second, and third generations of these cascades are displayed. In

(b), a closer detailed depiction of the two inverse period doubling cascades is provided. The stable attractor that participates in the intermittency phenomenon

described in this paper belongs to the stable branch in green in the interval 24:35 ms�1 < pee < 24:39 ms�1 and �41:63 mV < he < �41:66 mV, between the

two SNLC points.
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and 2, respectively (not shown). This means that branches

of the direct and inverse PDC1 and PDC2 are the same:

orbits originating at PD1 around pee ¼ 25:3 ms�1 in the

inverse PDC1 terminate at the first generation PD in the

direct cascade around pee ¼ 4:90 ms�1, the branch starting

at PD2 in the inverse PDC1 around pee ¼ 24:6 ms�1 ends at

the second generation PD in the direct PDC, and so on.

Second, the existence of inverse cascades implies the pres-

ence of intermittency, a sample of which is shown in Figs.

4(c) and 4(d). This phenomenon is readily apparent for val-

ues of pee approximately between the accumulation of PD

points from PDC1 and the small stable branch below this

cascade, starting at pee ¼ 24:39 ms�1 and shown in Fig.

3(b). Depending on the initial condition for the system vari-

ables and the vicinity of pee either to PDC1 or the stable

branch, the system bounces between the chaotic and the sta-

ble attractors without permanently settling on any of the

two.21 This behavior, in association with inverse PDCs, has

been labelled type III intermittency, as opposed to types I

and II, which are linked to different bifurcation scenarios.7

Although Liley’s neural field equations are known to sup-

port multistability,11 this is the first time that intermittency

has been reported.

V. CONCLUSIONS

The results presented in this work are indicative of four-

dimensional chaos within Liley’s model, and the Lyapunov

spectrum clearly suggests an integer part of three for the DKY

with a significant fractional part. The structure of the attrac-

tor, whilst technically of a low dimension if compared to

other models in the literature that show a DKY � 3, has

rather an amorphous appearance in cross section (see Fig. 2).

This is very relevant, since, at first examination, it may not

be possible to discern the attractor from noise either with a

simple visual inspection or even with nonlinear time-series

analysis techniques.22

The dynamics at this modelled scale in fact approxi-

mates those found at the scale of the macrocolumn, a mi-

croscopic aggregate of approximately 105 neurones. There

are tens of thousands of such macrocolumns when one

considers the scale of the entire brain, each massively

interconnected to each other via the intracortical and

cortico-cortical fibres. Let us assume that an individual

macrocolumn could indeed present a relatively amorphous

attractor as the one presented in this work. Since one EEG

electrode records the aggregate activity of many hundreds

of them, and since noise is always present in the brain at all

spatial and temporal scales, nonlinear time series analysis

methods could fail to recognise the appropriate dynamics,

mistaking it for noise. The real signal could indeed be a

combination of chaos and noise, but its nonlinear determin-

istic structure could not be ascertained with existing signal

processing methods. In a recent work, the authors have

highlighted some of the problems associated with those

methods when applied to simple, nonlinear dynamical sys-

tems.23 In the light of this and of the findings discussed in

the current work, the characterisation of the nature of EEG

dynamics in real contexts still presents major theoretical

and practical challenges.24 Further investigations are under-

way in order to determine the extent of high dimensional

chaos in parameter space, and understand the local and

global mechanisms, which give rise to such phenomena.

The occurrence of an inverse period doubling cascade

in Liley’s reduced equations is a novel finding. This cas-

cade is associated with type III intermittency, which has

never been reported for this system. This is not surprising

in a model, which has been known to be a source of com-

plexity, chaos and emergent behavior. It should be noted

that this phenomenon has interesting connections with

experimentally established EEG patterns, showing suppres-

sion of bursts, capturing some of their distinctive features.

Typical traces of such kind are characterised by persistent

isoelectric epochs, which are irregularly interrupted by

spiky activity.25 The hopping nature of intermittency in

Fig. 4 is dominated by the alternation of short-time, large-

amplitude chaotic “bursts” with long-time, small-amplitude

oscillatory periods, which give rise to patterns close to the

ones observed in clinical settings. These types of EEG sig-

nals have been encountered in a variety of clinical contexts,

in particular in anesthesia26 and epileptic encephalopathies

occurring in early infancy.27
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